Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China
نویسندگان
چکیده
Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.
منابع مشابه
Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China
BACKGROUND Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS Measured data of methane (CH(4)) and nitrous oxide (N(2)O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winte...
متن کاملThe Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields
A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulch...
متن کاملIntegrative impacts of soil tillage on crop yield, N use efficiency and greenhouse gas emission in wheat-corn cropping system
Wheat-corn cropping system is one of the most important grain production systems in theworld. However, the integrative impacts of soil tillage on crop yield, N use efficiency (NUE)and greenhouse gases (GHGS) emissions are not well documented in this system. Thus, a twoyear field experiment was carried out in a typical wheat-corn cropping system with four tillageregimes during the wheat season, ...
متن کاملDAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA
The DAYCENT ecosystem model (a daily version of CENTURY) and an emission factor (EF) methodology used by the Intergovernmental Panel on Climate Change were used to estimate direct and indirect N2O emission for major cropping systems in the USA. The EF methodology is currently used for the USA greenhouse gas inventory but process based models, such as DAYCENT, may yield more reliable results bec...
متن کاملNet global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete...
متن کامل